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Abstract
Adjoint sensitivity calculation of stress, buckling and

displacement constraints may be much less expensive
than direct sensitivity calculation when the number of

load cases is large.  Adjoint stress and displacement
sensitivities are available in the literature. Expressions

for local buckling sensitivity of isotropic plate elements

are derived in this study.  Computational efficiency of
the adjoint method is sensitive to the number of

constraints and, therefore, the method benefits from
constraint lumping.  A continuum version of the

Kreisselmeier-Steinhauser (KS) function is chosen to
lump constraints.  The adjoint and direct methods are

compared for three examples: a truss structure, a simple

HSCT wing model, and a large HSCT model.  These
sensitivity derivatives are then used in optimization.

Introduction
Sensitivity of structural response quantities, such as
functions of stress or displacement components, to

design parameters is useful in structural applications  of
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optimization, system identification, and probabilistic
analysis.  Finite difference derivatives are commonly

used, but they are expensive computationally and prone
to errors. Consequently, there is wide interest in

analytical sensitivity methods, commonly classified as
either direct or adjoint methods (e.g., Adelman and

Haftka, 1989).

The widely used direct method is obtained by direct

differentiation of the equations of equilibrium, which
are used to compute the structural responses or static

solutions. The number of static solutions required in
obtaining the derivatives is equal to the product of the

number of design variables and the number of load

cases. The adjoint method is obtained by differentiation
of constraint functionals. The number of static solutions

required to obtain the derivatives is equal to the number
of constraints of interest.  For problems with multiple

load cases or multiple structural configurations, such as

damaged versions of a structure, the adjoint method can
be more efficient than the direct method. This

computational advantage is enhanced for derivatives of
stress functions because these derivatives can be

calculated directly rather than obtained from derivatives
of the displacements. Reduction of the number of

constraints through constraint deletion and/or lumping

enhances the efficiency of the adjoint method.

The computational efficiency of the adjoint method is
offset by greater implementation effort compared to the

direct method, especially when based on differentiation
of discretized structural models. Akgün et al. (1998)

showed that this implementation penalty is alleviated

for stress constraints when the adjoint method is
implemented based on the continuum equations.  In this
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case, the adjoint load is implemented as initial strains
imposed in the elements of interest.

Initial strains for the sensitivity of von Mises

constraints with and without constraint lumping were
derived in a previous work (Akgün et al., 1998).

Implementation of the adjoint method was

demonstrated for truss and plane-stress elements. A
continuum version of the Kreisselmeier-Steinhauser

(KS) functional that allowed lumping of the constraints
with the adjoint method was investigated via a twenty-

five-bar truss problem.  The present study is a
continuation of that work.

The objectives of this study are to derive the adjoint
initial strains for  local buckling sensitivity computation

and to demonstrate the efficiency of the adjoint method
under multiple load cases with constraint lumping.  It is

shown that buckling constraints satisfy a homogeneity

property that simplifies buckling sensitivity
computation by obviating the need to compute partial

derivatives of the buckling constraint.  The example
problems used are the structural optimization of a truss

structure, a high-speed civil transport (HSCT) wing,
and a much larger HSCT model.

Formulation of Buckling Sensitivity
The discretized equations of equilibrium may be written
in terms of the stiffness matrix K , the force vector f,
and the displacement vector u as

               Ku = f               (1)

Differentiation of this equation with respect to a design
variable p gives

        Ku p = f 
p
 ≡ −K pu              (2)

where subscript p denotes derivative with respect to the

design variable, and f 
p
 is called the pseudo load. The

direct method solves for the displacement derivative

from Eq. (2) and, if necessary, computes stress
constraints from the displacement and its derivative.  If

the number of design variables is np and the number of

load cases (i.e., the number of vectors f) is nf , Eq. (2)
has to be solved npnf  times.

The adjoint method used here is based on a continuum

equation and requires the imposition of an adjoint load
in the form of an initial strain distribution.  When the

method is applied to a discrete model, an equation of

the form

               Ku
a
 = f 

a
              (3)

has to be solved nc times where nc is the number of
constraints of interest and, therefore, the number of

adjoint load vectors f 
a
, ua is the adjoint displacement,

and f 
a 
  is the force equivalent to the adjoint load.  For

stress constraints, f 
a 
  is derived from an applied initial

strain.  A finite element code that has initial strain

capability can easily generate the adjoint force, f 
a 
.  The

use of the adjoint displacement u a to calculate

sensitivities is described subsequently

Buckling sensitivity formulation will be carried out

next.  A perfect isotropic rectangular flat plate of
thickness t and sides a and b may buckle under biaxial

loading if the maximum value of
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exceeds unity, where an applied stress resultant Ni is
positive when tensile, and

                ∆ = +

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π2 3
2

2

2

2

2

t H
m
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n

b
             (5)

with

H E= −12 1 2( )ν             (6)

An isotropic infinite strip of width b having two simply
supported sides, on the other hand, may buckle under

pure in-plane shear if
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1
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.
                              (7)

exceeds unity (Whitney, 1987, p. 121).  When Eq. (7) is

applied to a rectangular flat plate, b is taken to be the
shorter edge.  Buckling under combined loading may

occur if the value of the interaction equation

       
1 1 1

2λ λ λcomb n s

= +                 (8)

reaches unity (Lekhnitskii, 1968).  A buckling

constraint for an isotropic plate under combined loading
may be therefore written as

   g t g t g t( , ) ( , ) ( , )N N N= + −1 2 1≤ 0              (9)

where N is the vector of stress resultants and

     g t g t
n s

1 2 2

1 1
( , ) ( , )N N≡ ≡

λ λ
 ,                  (10)

If λn is negative, g1 is taken to be zero.

The sensitivity of a buckling constraint is derived more
conveniently if the constraint is expressed as

                 G
A

g t dA≡ ∫1
( , )N                (11)

where A is the plate surface area. That is, G  is the value
of the buckling constraint averaged over an area A. .

The constitutive equation for the plate is
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where D is the constitutive matrix. The sensitivity of G

to the design variable p, where p may, for example, be

the plate's own thickness or the property of another
structural element, is obtained by differentiating Eq.

(11) with respect to p to yield

      G
A

g g dAp p p p= + ⋅ +[ ]∫1
, , , ,( )N N N εε       (13)

where a dot indicates inner product, a subscript
following a comma shows a partial derivative, and a

subscript without a comma denotes a total derivative.

If p is the property of another structural member, the
first two terms inside the square brackets in Eq. (13) are

zero.  Taking p=t,

N,t =Dε  ;   N,ε =tD.             (14)

In this formulation, it can be shown (Haftka and

Gürdal, 1992, pp. 312-316) that the adjoint load  f 
a

needed to compute sensitivities is obtained from  an
initial strain given by g,N/A, regardless of what p is, so

that the loading depends on the buckling equation but
not on the details of the finite element. The initial strain

for the buckling constraint is thus given by (assuming

λn > 0)

  εin
T xy

A

m

a

n

b

N b

H t
= − −
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2 6∆ ∆
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( . )
    (15)

This loading can be easily applied, then, in any program

that has initial strain loading capabilities. Under the
application of the adjoint load, the resulting

displacement field is called the adjoint displacement ua.
If we assume that g is constant over A it can be shown

that

    G g g gt t t t
p a= = + ⋅ + ⋅, , ,N N f u                (16)

where f 
p
 is the pseudo load which is also used in the

direct method (Eq. 2).

To simplify Eq. (16), a property of homogeneous
functions is introduced next with a brief digression. If h

is a homogeneous function of degree n in the arguments
N and t, that is, if

              h c ct c h tn( , ) ( , )N N=            (17)

and since
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N

N
t t= ,                                           (18)

it can be shown that

                h h
n

t
ht t, , ,+ ⋅ =N N            (19)

(Akgün et al., 1998).  In the present case, the constraint

g in Eq. (9) is not homogeneous as a whole but its

components are.  For g
1
, n=−2 and for g

2
, n=−4.

Equation (16) hence becomes

 G g
t

g gt t
p a= = − + + ⋅1

2 41 2( ) f u                    (20)

The homogeneity property (Eq. 19) hence does away
with the need to implement and compute partial

derivatives of the buckling constraint, and allows us to
use instead the constraint value, which is already

available.  When p is a property of a structural element

other than the plate whose sensitivity is being
computed, the buckling sensitivity is simply given by

                    G gp p
p a= = ⋅f u                               (21)

It should be noted that the homogeneity is not limited to
the constraints for isotropic plates; it is valid for

composite laminates as well.

Constraint Lumping
The adjoint method requires computation of the adjoint

displacements for every potentially active constraint.
Reducing the number of constraints by lumping them

into groups can increase the savings brought about by

the method.  The continuum version of the KS (Akgün
et al., 1998) function is used here to lump a set of

buckling constraints for a number of flat plates into a
single constraint and is defined here as

     KS g t G g t( , )
1

N N( ) = ( )
ρ

ln ( , )            (22)

with ρ being a positive parameter and where

        G g t
A

dAg t( , ) ( , )N N( ) = ∫ 1
eρ            (23)

Here the integral is taken over all the plate elements
being lumped together, and A is the surface area of the

corresponding plate. In the implementation for this

study the integrand in Eq. (23) is constant within each
plate. The derivative of the KS function is given as

                    KS G Gp p= ρ            (24)

Steps similar to those leading to Eqs. (16) and (20)

from Eq. (10) yield

G
p

g gp
g

i i t p
i

m
p ai

i
= − + + ⋅

=
∑ρ δρe   ( )2 41 2

1

f u

                  (25)

where m is the number of buckling constraints lumped

together and pti
δ  is a Kronecker delta. pti

δ  is unity if

design variable p is the thickness of the i th plate and

zero if design variable p is not the thickness of the ith
plate.  The adjoint displacement ua is now due to an

initial strain state, imposed simultaneously in each of
the plate elements being lumped.  The strain state to be

imposed in the ith plate is given by

                      εin
T

i
= ρ ρe

g

A
gi ,N            (26)

where g,N/A is given by the right hand side of Eq. (15),
which is the strain state imposed in a single element in

the absence of lumping.

When multiple load cases are present, one may want to

lump all constraints for the group of m members under

all the load cases together into the same KS function.
This is the approach we used with the direct method in

the comparison studies described below.  For such an
approach, however, we could not find an initial strain

state for sensitivity calculation with the adjoint method.
Instead of lumping, approach adopted here for the

adjoint method is to select the most critical load case

for buckling and von Mises constraints separately for
each group of elements and to lump each type of
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constraints under the respective load case together.  The
constraints under the other load cases are ignored. The

initial strain state given by Eq. (26) is then computed at
the most critical load case.

Applications
Three examples of varying complexity are used to
compare the efficiency of the adjoint and direct

methods.  The three examples are a 108-bar truss, a
simple HSCT wing model, and a large HSCT model.

Sensitivity derivatives are obtained using both methods
and then used in optimization.  The 108-bar truss

example is used to compare the effect of lumping on

the two methods.  The efficiency of both methods is
compared by varying the number of load cases for the

two HSCT examples.

Both the adjoint and direct methods are implemented in

a commercial finite element program, EAL
(Engineering Analysis Language, EISI-EAL, 1983), for

plane-stress elements with von Mises stress constraints
and buckling constraints and for truss elements.  The

optimization code MINOS (Murtagh and Saunder,
1993) has been incorporated into EAL.  The linear

programming option of MINOS (based on the simplex

method) is used in a sequential linear programming
(SLP) optimization approach for this study.

Examples 1 and 2 were run on a Pentium 166 MHz PC

with a single processor with a Windows NT operating
system at the University of Florida.  Example 3 was run

on a dual processor Pentium 400 MHz PC with a

Windows NT operating system at the NASA Langley
Research Center.  For all three examples, a finite

difference approach was used to compute the derivative
of the stiffness matrix, design variables were

constrained by move limits which were initially 50
percent of the starting design variable values, and when

lumping was used the value of the KS function

parameter ρ was 50.

The lumping strategy used with the adjoint method was
to lump each type of constraints (i.e., von Mises and

buckling types where applicable) in a design region

under the most critical load case into a single KS

function whereas the strategy with the direct method
was to lump each type of constraints under all the load

cases into a single KS function.  The two lumping
strategies were thus different even though the resulting

optima were very close.  No constraint deletion strategy
was used with either method with or without lumping.

Example 1:  108-bar truss
A 45-node, 108-bar, 80-dof plane truss, shown in Fig.

1, was divided into 32 design regions, with bars in each
region having a common cross-section, thus giving 32

design variables. Optimization runs were made with
seven load cases using the direct and the adjoint

methods, with and without lumping.  When lumping

was used, bar stress constraints in each region were
lumped into a continuum KS function.  Hence there

were 32 KS functions in either method.  When no
lumping was used, there were 756 constraints.  The

direct method with and without lumping required the

solution of Eq. (2) 224 times, with the stiffness matrix
already factored, whereas the adjoint method required

the solution of Eq. (3), of the same size, 108 and 32
times without and with lumping, respectively.  The

reason for 108 solutions instead of 756 is that the

adjoint load vector f 
a 
 for a given bar for different load

cases differs only by a scalar factor.

The optimum weight and the CPU time using the

adjoint method and the direct method are given in Table

1.  The CPU times are for the entire optimization run
(i.e., 8 SLP cycles).  The optimum weights in the table

are the weights at the end of eight optimization cycles
representing convergence to 10 significant digits.

As can be seen from Table 1, the final weights show
some dependence on lumping and the choice of

method. This is attributed to optimization history and to
the effect of the KS function, which applies a slightly

more conservative constraint. It can also be seen that
the lumping was more beneficial to the direct method

than the adjoint method, even though one would expect

the opposite.  The reason for this anomaly is that the
savings associated with the adjoint method is  in the

solution of the equations of equilibrium with fewer
right hand sides. This solution increases superlinearly

with problem size, and is very small for small
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problems. The additional cost due to implementation
discussed earlier, is proportional to the number of

elements in the problem, and is therefore more
significant than the solution time for small problems.

Table 1.  Optimum weights of the 108-bar truss and
total (8 cycles) CPU times with the direct and
adjoint methods with and without KS lumping
under seven load cases.

Weight, lb
(Time, sec)

No
Lump

36.523367

(312)
Direct

Lump 37.359306

(169)

No
Lump

37.022500

(292)
Adjoint

Lump 37.353403

(256)

Example 2:  Simple HSCT wing
A simple high-speed civil transport (HSCT) wing
model developed by Balabanov et al. (1996), whose

planform view is shown in Fig. 2, is investigated here.

The 3-D model has 193 nodes, 449 2-node bar
elements, 383 triangular isotropic membrane elements

and 129 isotropic shear panel elements with a total of
533 degrees of freedom.  Figure 2 shows the design

regions selected on the top skin of the HSCT model, the
bottom skin being the mirror image of those.  Skin

regions 1, 2, 10, 11, 12, and 13, which cover the trailing

edge and strake of the wing, are governed by the
minimum gauge-thickness constraint set at 0.0035 ft.

Skin thickness within each design region is uniform.
The minimum gauge area used for the bar elements is

0.0040 ft2.  Not all of the finite elements are designed.
There are 40 design variables consisting of 26

membrane thicknesses and 14 bar cross-sectional areas.

A series of optimization runs with different numbers of

load cases was made.  There were five basic load cases

which were due to pull-up maneuvers, climb, cruise and
taxiing.  Additional fifteen load cases were derived as a

combination of the basic five cases.  Stress constraints
were based on von Mises equivalent stresses in the

membrane elements and axial stresses in the bars.

The implementation of the adjoint method for the

sensitivity of lumped buckling constraints was first
verified. The model was then optimized under one, five

and twenty load cases in different runs subject to
buckling and von Mises stress constraints for

membrane elements and yield limits for bar elements.
There were 66 KS functions with both methods

regardless of the number of load cases.  Equation (2)

had to be solved 40nf times with the direct method
where nf is the number of load cases and Eq. (3) 66

times with the adjoint method regardless of the number
of load cases.  The optimum weights and the CPU times

are given in Table 2. The CPU times are for the entire

optimization run (i.e., 8 SLP cycles).  The optimum
weights in the table are the weights at the end of eight

optimization cycles representing convergence to 13
significant digits.

Table 2.  Optimum weights of the simple HSCT
model and total (8 cycles) CPU times with the two
methods using KS lumping.

Direct AdjointNo of
Load
Cases

W, lb
(t, sec)

W, lb
(t, sec)

1 119746.87495532
(750)

119746.87495534
(1410)

5 149327.13548552

(1410)

149327.13548557

(1560)

20 149327.13548552

(2962)

149327.13548557

(1627)

As can be seen from Table 2, the final weights agree to
13 digits accuracy.  Also, for this larger problem, the

improved efficiency with number of load cases of this
implementation of the adjoint method compared to the

direct method is apparent.  For five load cases the two
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methods are comparable, and for 20 load cases the
adjoint method is about 45% cheaper.

Example 3: Large HSCT
The third example is a half-symmetric model of an
entire high-speed transport aircraft1 shown in Fig. 3.

This model was originally presented by Scotti (1995).

Results were performed at NASA Langley Research
Center.  The present EAL adjoint runstreams cannot

handle four-noded membrane elements and, therefore,
each four-noded element in the original model’s design

regions was replaced with two three-noded elements,
which increased the total number of elements in the

model to 16434.  In addition, all composite honeycomb

plate sections were replaced with isotropic membrane
sections, which reduced the number of design variables

in the model to 61. Both stress and buckling constraints
are computed for the triangular elements in the design

regions.

There are seven basic load cases, six arising from

supersonic maneuvers at +2.5g and -1.0g and the
seventh represents a taxi condition.  Additional fourteen

load cases were generated from various combinations
of the basic six maneuver load cases.  For timing

purposes, the model was run for four optimization

cycles using both the adjoint and direct method.  For
each method, analyses were performed with one, seven,

14, and 21 load cases.  The CPU time required to
complete an optimization cycle is plotted against the

number of load cases in Fig. 4.  The lines shown in the
figure are best-fit through the average of the run times

for the four cycles.  The actual run times for individual

cycles  are also indicated on the figure.

For a single load case, the direct method is twice as fast
as the adjoint method. However, as the number of load

cases increases, the adjoint method becomes more
efficient.  Because this example is larger than the prior

two examples, the efficiency of the adjoint method as

                                                  
1 The structural model for this example has been
supplied by the Boeing Company and the results are

presented without absolute scales in this paper under
the conditions of a NASA Langley Property Loan

Agreement, Loan Control Number I922931.

the number of load cases increases is greater, and the
break-even point now appears to be around three or

four load cases.  For 21 load cases, the problem
solution with the adjoint method requires only about

one-third of the time required by the direct method.

In addition, the optimization was run to convergence

using both methods with one load case and seven load
cases.  Figure 5 shows the convergence history for the

normalized objective function.  It is seen that the direct
and adjoint methods converge to comparable weights.

The values of the design variables were also similar.

Discussion and Conclusions
Sensitivity of normal and shear buckling constraints in

membranes has been formulated and implemented
using the adjoint method.  Sensitivity of lumped

constraints has also been implemented. The present

formulation utilizes a characteristic of homogenous
functions to avoid calculation of partial derivatives of

the constraints and the shear resultants.  Test cases
including a 108-bar truss and two high speed civil

transport (HSCT) models of different complexities
were used to compare the direct and the adjoint

methods of sensitivity computation.  The two methods

have been compared in terms of efficiency for various
numbers of load cases in optimization runs performed

with the EAL finite element software.

The direct method was found to be more efficient for a
small number of load cases.  The adjoint method

outperforms the direct method in runs with a large

number of load cases.  The advantage of the adjoint
method results from requiring static solutions equal in

number to the number of active constraints, while the
direct method requires a number equal to the number of

design variables times the number of load cases. The
advantage of the adjoint method increases with problem

size because the solution cost per load case increases

superlinearly with problem size.  It must be noted,
however, that the implement EAL (Engineering

Analysis Language) optimization code was originally
developed for the direct method and the adjoint method

has been recently added to the code; there is room for
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improving the efficiency of the adjoint method as
currently implemented.

The implementation of the direct method in EAL has

been aided with specialized processors developed
especially for this method. The implementation of the

adjoint method used standard EAL runstream

commands, which may accrue higher overhead during
execution.  Thus, for a single load case the adjoint

method required substantially more time than the direct
method.

No constraint deletion strategy was used with either the

direct or the adjoint method.  It may be worthwhile to

investigate the effect of constraint deletion in
conjunction with lumping or without lumping.
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Figure 2. Simple HSCT wing model and the design regions on the top skin.
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Figure 3.  Half-symmetric finite-element model of the large high-speed civil transport.
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Figure 4.  CPU timing as a function of load cases for the large high-speed civil transport.
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Figure 5.  Optimization history for the large high-speed civil transport.


